12. Singular Value Decomposition#

If we have matrix \(A \in \mathbb{C}^{m\times n}\). Assume that \(\text{rank}(A) = r \le \min{(m, n)}\). The theorem of SVD states that:

Theorem: Singular Value Decomposition

There exists unitary matrices \(U \in \mathbb{C}^{m\times m}\), \(V \in \mathbb{C}^{n \times n}\) such that

\[ A = U \Sigma V^* \]

With \(V^*\) the complex conjugate transpose of \(V\), \(\Sigma \in \mathbb{R}^{m \times n}\) is a diagonal matrix which has the following form:

\[\begin{split} \begin{align*} \Sigma = \begin{bmatrix} \Sigma_r & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \end{align*} \end{split}\]

With \(\Sigma_r\) a diagonal square matrix with the diagonal entries are the non-zero singular values of \(A\), denotes \(\text{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)\)

From here, we can think more about the structure of \(U, V\). Let us have the following form of the matrices \(U, V\)

\[\begin{split} \begin{align*} U &= \begin{bmatrix} U_1 & U_2 \end{bmatrix} \; \text{with} \; U_1 \in \mathbb{C}^{m\times r}, U_2 \in \mathbb{C}^{m \times (m-r)} \\ V &= \begin{bmatrix} V_1 & V_2 \end{bmatrix} \; \text{with} \; V_1 \in \mathbb{C}^{n\times r}, V_2 \in \mathbb{C}^{n \times (n-r)} \end{align*} \end{split}\]

With this and the theorem, we can now break down further the decomposition into:

\[ A = U\Sigma V^* = U_1 \Sigma_r V_1^* \]

We also have \(U^*U = I_m\), \(V^*V = I_n\), \(U_1^*U_1 = I_r\), \(V_1^*V_1 = I_r\).

From here we have:

\[\begin{split} \begin{align*} &AA^* = U_1 \Sigma_r V_1^*(U_1 \Sigma_r V_1^*)^* = U_1 \Sigma_r V_1^*V_1\Sigma_r^*U_1^* = U_1 \Sigma_r^2 U_1^*\\ &AA^*U_1 = U_1 \Sigma_r^2 \; \text{with} \; U_1 = \begin{bmatrix} u_1 & u_2 & \dots & u_r \end{bmatrix} \end{align*} \end{split}\]

Look at the last equation, it has the form of eigenvalues and eigenvectors (\(Av = \lambda v\)). We call that the columns \(u_i\) of \(U_1\) is the left singular vectors of the matrix \(A\).

Similarly, using the same break down, we will have:

\[\begin{split} \begin{align*} &A^*A = (U_1 \Sigma_r V_1^*)^*U_1 \Sigma_r V_1^* = V_1 \Sigma_r^* U_1^*U_1 \Sigma_r V_1^* = V_1 \Sigma_r^2 V_1^* \\ &A^*A V_1 = V_1 \Sigma_r^2 \; \text{with} \; V_1 = \begin{bmatrix} v_1 & v_2 & \dots & v_r \end{bmatrix} \\ &A^*A v_i = \sigma_i^2 v_i \end{align*} \end{split}\]

We call \(v_i\) the right singular vectors of matrix \(A\).