Notes on feedback control#
The materials in this part heavily stems from MAE433 lecture note taught at Princeton University
State-space systems#
Question: Why does if \(\dot{x} = Ax\) then the solution is \(x(t) = e^{At}x_0\)
Before talking about the matrix \(A\), let us first look at a simpler case where we have \(\dot{x} = ax\), with \(a\) a scalar value.
We have the following derivation:
\[\begin{split}
\begin{align*}
&\dot{x} = ax \\
&\leftrightarrow \frac{\dot{x}}{x} = a \\
&\leftrightarrow \int_{x_0}^{x(t)} \frac{\dot{x}}{x} \,dx = \int_{0}^{t} a \,dt && \text{taking integral both sides} \\
&\rightarrow \log{x(t)} - \log{x_0} = at \\
&\leftrightarrow \log{\frac{x(t)}{x_0}} = at \\
&\leftrightarrow \frac{x(t)}{x_0} = e^{at} \\
&\leftrightarrow x(t) = e^{at} x_0
\end{align*}
\end{split}\]